

MATHEMATICS STANDARD LEVEL PAPER 1

Thursday 5 November 2009 (afternoon)

1 hour 30 minutes

0 0		C	andi	date	sessi	on n	umb	er	
	0	0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Blank page

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer **all** the questions in the spaces provided. Working may be continued below the lines, if necessary.

[Ма	ximum	n mark: 8]	
Let	f(x) =	$= 2x^3 + 3$ and $g(x) = e^{3x} - 2$.	
(a)	(i)	Find $g(0)$.	
	(ii)	Find $(f \circ g)(0)$.	[5 marks]
(b)	Find	$f^{-1}(x)$.	[3 marks]

2. [Maximum mark: 6]

- (a) Let $\mathbf{u} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} 3 \\ -1 \\ p \end{pmatrix}$. Given that \mathbf{u} is perpendicular to \mathbf{w} , find the value of p. [3 marks]
- (b) Let $\mathbf{v} = \begin{pmatrix} 1 \\ q \\ 5 \end{pmatrix}$. Given that $|\mathbf{v}| = \sqrt{42}$, find the possible values of q. [3 marks]

3. [Maximum mark: 6]

Let *X* be normally distributed with mean 100 cm and standard deviation 5 cm.

(a) On the diagram below, shade the region representing P(X > 105).

[2 marks]

(b) Given that P(X < d) = P(X > 105), find the value of d.

[2 marks]

(c) Given that P(X > 105) = 0.16 (correct to two significant figures), find P(d < X < 105). [2 marks]

.....

.....

.....

4. [Maximum mark: 5]

The diagram below shows the graph of a function f(x), for $-2 \le x \le 4$.

(This question continues on the following page)

(Question 4 continued)

Let h(x) = f(-x). Sketch the graph of h on the grid below.

[2 marks]

(b) Let $g(x) = \frac{1}{2}f(x-1)$. The point A(3, 2) on the graph of f is transformed to the point P on the graph of g. Find the coordinates of P.

[3 marks]

5. [Maximum mark: 6]

Consider $f(x) = x^2 + \frac{p}{x}$, $x \ne 0$, where p is a constant.

(a)	Find $f'(x)$.	[2 marks]

b)	T1	he	re	i	S	a :	m	in	in	nı	ın	n '	Vä	alı	ıe	C	of	f	r(x	y (W	h	er	1 .	x :	=	_	2	Fi	n	d	th	e	V	alı	ue	C	f	p					L	[4	m	ar	k	S

.....

6.	[Maximum	mark:	71

Solve $\cos 2x - 3\cos x - 3 - \cos^2 x = \sin^2 x$,	for $0 \le x \le 2\pi$.

7.	[Maximum	mark:	7]
. •	[1,100000,000	111001110.	′ _

Let $f(x) = k \log_2 x$.

(a)	Given that	$f^{-1}(1) = 8$, find the value of k.	[3 marks]
(a)	Orven mai	$(1) = 0$, this the value of κ .	/ J marks/

(b)	Find $f^{-1}\left(\frac{2}{3}\right)$.	[4 marks]
-----	---	-----------

•			•	•	٠	•		•		 •	•	•	•	•		•	•	•	•	 •	٠	٠	٠	٠	٠	٠	•	•	٠	٠	٠	•	•	•			 •	•	٠	•			•	٠	٠	•	٠		 •	٠	٠	٠	•		•	٠
•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•
•		•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•			 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		 •	•	•	•	•		•	•	•	•	•	•	 •	٠	٠	•	•		•	٠

Do NOT write on this page.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 12]

In a class of 100 boys, 55 boys play football and 75 boys play rugby. Each boy must play at least one sport from football and rugby.

- (a) (i) Find the number of boys who play both sports.
 - (ii) Write down the number of boys who play only rugby.

[3 marks]

- (b) One boy is selected at random.
 - (i) Find the probability that he plays only one sport.
 - (ii) Given that the boy selected plays only one sport, find the probability that he plays rugby.

[4 marks]

Let A be the event that a boy plays football and B be the event that a boy plays rugby.

(c) Explain why A and B are **not** mutually exclusive.

[2 marks]

(d) Show that *A* and *B* are **not** independent.

[3 marks]

9. [Maximum mark: 16]

Let $f(x) = 3 + \frac{20}{x^2 - 4}$, for $x \neq \pm 2$. The graph of f is given below.

-12-

The *y*-intercept is at the point A.

(a) (i) Find the coordinates of A.

(ii) Show that f'(x) = 0 at A.

[7 marks]

- (b) The second derivative $f''(x) = \frac{40(3x^2+4)}{(x^2-4)^3}$. Use this to
 - (i) justify that the graph of f has a local maximum at A;

(ii) explain why the graph of f does **not** have a point of inflexion.

[6 marks]

(c) Describe the behaviour of the graph of f for large |x|.

[1 mark]

(d) Write down the range of f.

[2 marks]

Do NOT write on this page.

10. [Maximum mark: 17]

Let $f(x) = \sqrt{x}$. Line L is the normal to the graph of f at the point (4, 2).

(a) Show that the equation of L is y = -4x + 18.

[4 marks]

(b) Point A is the x-intercept of L. Find the x-coordinate of A.

[2 marks]

In the diagram below, the shaded region R is bounded by the x-axis, the graph of f and the line L.

(c) Find an expression for the area of R.

[3 marks]

(d) The region R is rotated 360° about the x-axis. Find the volume of the solid formed, giving your answer in terms of π .

[8 marks]